Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.11.20187369

ABSTRACT

The pandemic spread of the potentially life-threatening disease COVID-19 requires a thorough understanding of the longitudinal dynamics of host responses. Temporal resolution of cellular features associated with a severe disease trajectory will be a pre-requisite for finding disease outcome predictors. Here, we performed a longitudinal multi-omics study using a two-centre German cohort of 13 patients (from Cologne and Kiel, cohort 1). We analysed the bulk transcriptome, bulk DNA methylome, and single-cell transcriptome (>358,000 cells, including BCR profiles) of peripheral blood samples harvested from up to 5 time points. The results from single-cell and bulk transcriptome analyses were validated in two independent cohorts of COVID-19 patients from Bonn (18 patients, cohort 2) and Nijmegen (40 patients, cohort 3), respectively. We observed an increase of proliferating, activated plasmablasts in severe COVID-19, and show a distinct expression pattern related to a hyperactive cellular metabolism of these cells. We further identified a notable expansion of type I IFN-activated circulating megakaryocytes and their progenitors, indicative of emergency megakaryopoiesis, which was confirmed in cohort 2. These changes were accompanied by increased erythropoiesis in the critical phase of the disease with features of hypoxic signalling. Finally, projecting megakaryocyte- and erythroid cell-derived co-expression modules to longitudinal blood transcriptome samples from cohort 3 confirmed an association of early temporal changes of these features with fatal COVID-19 disease outcome. In sum, our longitudinal multi-omics study demonstrates distinct cellular and gene expression dynamics upon SARS-CoV-2 infection, which point to metabolic shifts of circulating immune cells, and reveals changes in megakaryocytes and increased erythropoiesis as important outcome indicators in severe COVID-19 patients.


Subject(s)
COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.15.20188896

ABSTRACT

Coronavirus disease 2019 (COVID-19) displays high clinical variability but the parameters that determine disease severity are still unclear. Pre-existing T cell memory has been hypothesized as a protective mechanism but conclusive evidence is lacking. Here we demonstrate that all unexposed individuals harbor SARS-CoV-2-specific memory T cells with marginal cross-reactivity to common cold corona and other unrelated viruses. They display low functional avidity and broad protein target specificities and their frequencies correlate with the overall size of the CD4+ memory compartment reflecting the immunological age of an individual. COVID-19 patients have strongly increased SARS-CoV-2-specific inflammatory T cell responses that are correlated with severity. Strikingly however, patients with severe COVID-19 displayed lower TCR functional avidity and less clonal expansion. Our data suggest that a low avidity pre-existing T cell memory negatively impacts on the T cell response quality against neoantigens such as SARS-CoV-2, which may predispose to develop inappropriate immune reactions especially in the elderly. We propose the immunological age as an independent risk factor to develop severe COVID-19.


Subject(s)
COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL